

Bonnasil Silica

Deliver Reliable Purification Across All Scales

FOR BETTER SEPARATION

Optimized Solutions for Better Separation

Unified Separation's Bonnasil silica media is composed of high purity spherical silica gel with a uniform pore distribution and proprietary asymmetric bonding technology designed to support efficient and reliable separations across various applications. The Bonnasil product line includes three types: Bonnasil-BS, Bonnasil-HS, and Bonnasil-CH. Each type is available in a range of particle sizes, pore sizes, and bonded phases, tailored to diverse separation requirements from bench-scale testing to large-scale production, ensuring a smooth and efficient purification process.

Bonnasil Silica Features

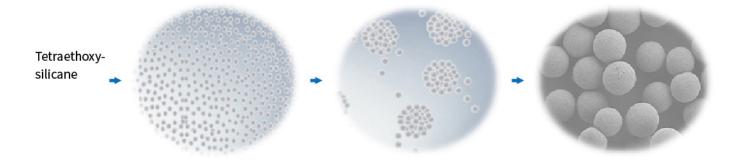
Uniform Pore Size and low Metal

- ·Increases effective surface area
- · Minimize peak tailing
- Improve loading and yield

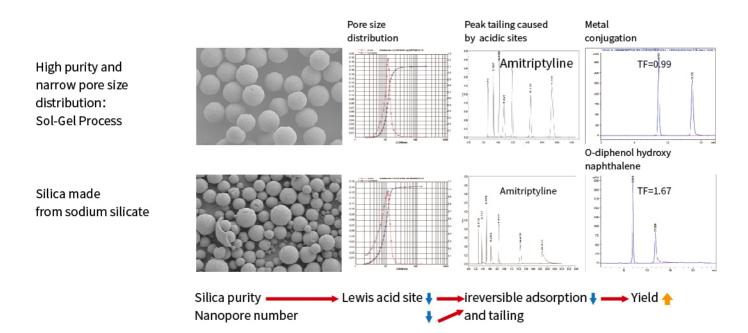
Asymetric Bonding

- Enhances selectivity for separating achiral isomers
- ·Boost loading capacity

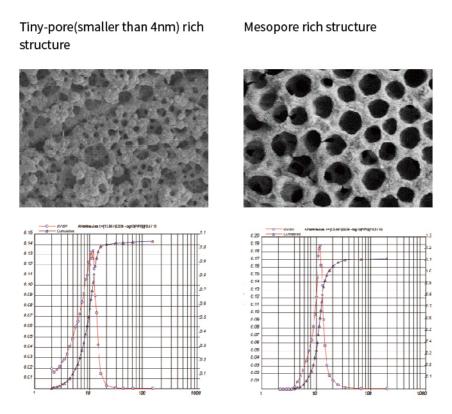
Superior Mechanical Strengh and Chemical Stability

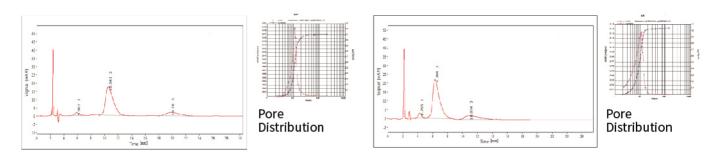

- Durable for repeated
 DAC packing cycles
- · High pH tolerance for easy NaOH cleaning
- · Cost effective with extended durability

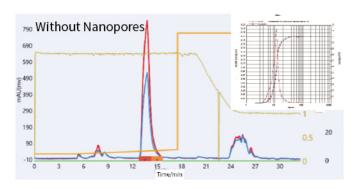
High Performance, Broad Selection, Lower Cost


- · Significantly reduce total purification costs without compromising quality by selecting the most suitable material
- Lower prices achieved through optimized manufacturing processes

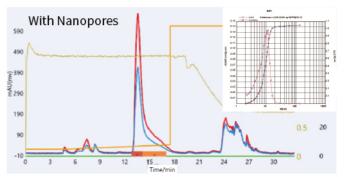
High purity and narrow pore size distribution deliver sharper peaks and lower metal interference, boosting loading and yield to improve your productivity


Manufacturing Mesoporous Spherical Silica via High-Purity Nanosol Coacervation (Nano-Assembling Method)


Manufactured via the Sol-Gel process, Bonnasil silica eliminates nanopores (<4nm) and exhibits a narrow pore size distribution.


Removing irregular pores enhances peak symmetry and efficiency

Media	Bonnasil C18 10 μm 100 Å			
Media	Regular Silica Based C8 10 μm 100 Å			
	Phase A: 50 mM NH₄HCO₃			
Mobile Phase	Phase B: ACN			
Gradient (min)	АВ			
0.00	68	32		
20.00	58	42		
20.10	68	32		
25.00	68 32			
Flow Rate	1 mL/min			
Wave Length	254 nm			



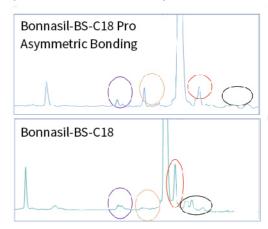
Nanopore elimination greatly enhances peak shape.

Narrow

Broad

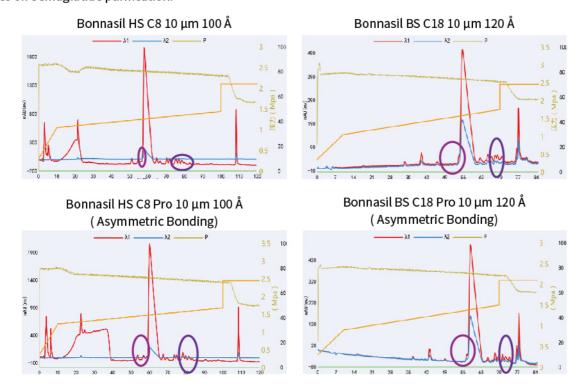
Bonnasil-BS, with its high purity and uniform pores, delivers superior purity and greater yield compared to standard silica.

Media	Bonnasil-BS silica 30 μm 100 Å	Regular silica 30 μm 100 Å		
Column	10 g Silica Column			
Sample	Phospho	pramidite		
Flow rate	4 mL	./min		
Loading	2.5 g	2.5 g		
Purity	99.3%	98.2%		
Yield	81%	59%		
Chromatogram	9X0 (0) 4Y0 (80) 9X0 (0) 9X	100 300 200 100 100 100 100 100 100 1		

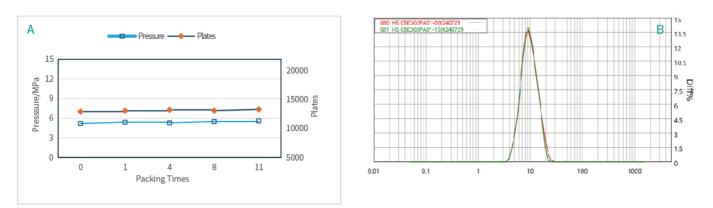

Asymmetric Bonding enhances separation of achiral isomers and increases loading capacity for greater efficiency

Asymmetric bonding using branched or mixed silanes modifies the thermodynamics of surface–analyte interactions, primarily by increasing entropy. This leads to greater variation in ΔG among analytes, thereby enhancing chromatographic selectivity—particularly for closely related compounds such as peptide isomers or oligonucleotide intermediates. By leveraging the principle of entropy increase, asymmetric bonding improves both resolution and sample loading capacity.

Illustration of asymmetric bonding
$$\begin{array}{c} & & & \\ & &$$


Asymmetric C18 bonding provides improved separation of Semaglutide compared to conventional C18 phases.

Media	Bonnasil-BS C18 Pro 8 μm 120 Å	
	Bonnasil-BS C18 8 μm 120 Å	
Column	4.6×250 mm	
Sample	Semaglutide	
Loading	0.01%	
Mahilanhasa	A:TFA in H ₂ O	
Mobile phase	B:ACN	
Flow	1mL/min	

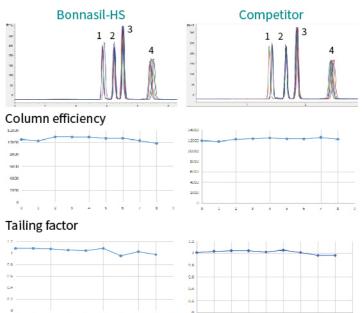

Asymmetrically bonded HS C8 Pro and BS C18 Pro columns show superior separation of both early- and late- eluting impurities on Semaglutide purification.

Enhanced stability prolongs media lifespan and lowers costs

High-purity Bonnasil silica with a narrow pore size distribution exhibits outstanding mechanical strength and chemical stability, leading to reduced costs.

As shown in the diagrams below, Bonnasil-HS C8 10 μ m media exhibits stable back pressure and consistent theoretical plate counts across 11 consecutive packing cycles in a 50 mm ID DAC column (A). Particle size analysis throughout the cycles confirms that the majority of particles remain centered around 10 μ m (B).

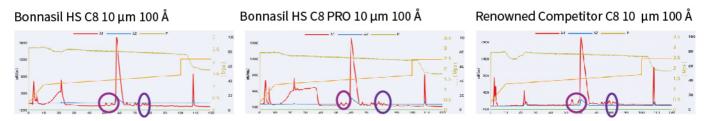
The test material was packed at 10 MPa, with back pressure monitored continuously. The diagrams illustrate the back-pressure profile and theoretical plate count after packing cycle (A), as well as particle size distribution (B).



Bonnasil-HS media demonstrates excellent high pH tolerance.

The data below illustrate peak shape, column efficiency, and tailing factor after each cycles of NaOH washing. Compared to a leading silica media on the market, Bonnasil-HS delivers comparable performance.

Madia	Bonnasil-HS C8 10μm 100 Å			
Media	Competitor C8 10μm 100 Å			
Column	4.6×250 mm			
NaOH Solution	0.1 M NaOH: ACN =50%: 50%			
Mobile Phase	85% Methanol : 15% Water			
Flow	1 mL/min			
6	1.Uracil 2.Phenol			
Samples	3.Nitrobenzene 4. Naphthalene			


Column efficiency and tailing factor were determined using naphthalene as the test compound.

Bonnasil media offers a broad product range, delivering high performance at a competitive cost

As shown in the chromatograms below, Bonnasil HS C8 Pro provides better impurity resolution in Semaglutide purification compared to the market-leading C8 column and Bonnasil HS C8. This demonstrates the performance advantages of its asymmetric bonding technology.

Column	Bonnasil HS C8 / Bonnasil HS C8 Pro / Competitor C8 10μm 100Å 10x250 mm				
Injection	5 mg				
Detection	210 nm				
Monitor	280 nm				
Mobile phase A	20 mM NaH ₂ PO ₄ (pH2.5)				
Mobile phase B	ACN				
Flow rate	3 mL/min				
Cradiant	T (min)	0	10	100	120
Gradient	B (%)	10	35	48(70)	70

Table of Product Specification

	Bonnasil-BS	Bonnasil-HS	Bonnasil-CH	Bonnasil-PV
Particle size	10/15 μm	10 μm	10/30 μm	30 μm
Pore size	70/120 Å	100 Å	100 Å	70/100 Å
Metal content	≤50 ppm	≤50 ppm	≤50 ppm	≤50 ppm
Surface area	~300	~320	~300	~320
Pore volume	1.0	0.9	1.0	0.8
pH range	2-9	2-10	1-12	2-8
Application	Designed for a broad range of small-molecule purifications, providing versatile options in particle size, pore size, and bonding phases to meet diverse purification requirements.	Features precise control over particle and pore size distribution, making it ideal for purifying peptide products such as insulin, GLP-1 agonists.	Hybrid surface-treated, alkali-resistant silica gel capable of withstanding high pH conditions. This allows for a wider selection of mobile phases, making it well-suited for purifying alkaline compounds and fermentation products.	Large particle silica media is designed for medium-pressure columns, providing low back pressure and fast flow rates. With optimized pore structure and uniform particles, it delivers reliable efficiency and durability for fast purifications.

Order Information

Product Description	Bonded Phase	Particle Size (μm)	Pore Size (Å)	Part Number
Bonnasil-HS C8	C8	10	100	UHS8102000-0
Bonnasil-HS C18	C18	10	100	UHS9102000-0
Bonnasil-HS C8 Pro	C8	10	100	UHST102000-0
Bonnasil-BS C18	C18	10	120	UBS9102000-2
Bonnasil-BS AQ C18	C18	10	120	UBSM102000-2
Bonnasil-BS C18 Pro	C18	10	120	UBSE102000-2
Bonnasil-BS C8	C8	10	120	UBS8102000-2
Bonnasil-BS Silica	Silica	15	70	UBSS152000-T
Bonnasil-CH C8	C8	10	120	UCH8102000-2
Bonnasil-CH C18	C18	10	120	UCH9102000-2
Bonnasil-CH C18	C18	30	120	UCH9302000-2
Bonnasil-PV Silica	Silica	30	70	UPVS302000-T
Bonnasil-PV Silica	Silica	30	100	UPVS302000-0
Bonnasil-PV C18	C18	30	100	UPV9302000-0

Preparative Column

Ciliaa Bartiala Ciaa 10/15	Preparative Column Dimensions mm x mm				
Silica Particle Size 10/15 μm	ID 4.6 mm	ID 10 mm	ID 21.2 mm	ID 30 mm	ID 50 mm
Bonnasil-HS C8 Bonnasil-HS C18 Bonnasil-HS C8 Pro Bonnasil-BS C18 Bonnasil-BS AQ C18 Bonnasil-BS C18 Pro Bonnasil-BS C8 Bonnasil-BS Silica Bonnasil-CH C8 Bonnasil-CH C18	4.6×250	10×150 10×250	21.2×150 21.2×250	30×150 30×250	50×150 50×250

Flash Column

Silica Particle Size 30 μm	Flash Column Specification (g)	Packaging ea/pk
	4	20
	12	20
	20	20
Bonnasil-CH C18	40	10
Bonnasil-PV Silica	80	5
Bonnasil-PV C18	120	5
	220	2
	330	1
	5000	1

FOR BETTER SEPARATION

Unified Separation Technologies (UST)
Address: 4023 Kennett Pike PMR215 Wilmington, DE 19807-2018 USA

Email: info@unifiedseparation.com